On Homogenization of Nonlinear Hyperbolic Equations

نویسندگان

  • Y. Efendiev
  • B. Popov
چکیده

In this paper we study homogenization of nonlinear hyperbolic equations. The weak limit of the solutions is investigated by approximating the flux functions with piecewise linear functions. We study mostly Riemann problems for layered velocity fields as well as for the heterogeneous divergence free velocity fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions

In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...

متن کامل

Quantitative Homogenization of Analytic Semigroups and Reaction–diffusion Equations with Diophantine Spatial Frequencies

Based on an analytic semigroup setting, we first consider semilinear reaction–diffusion equations with spatially quasiperiodic coefficients in the nonlinearity, rapidly varying on spatial scale ε. Under periodic boundary conditions, we derive quantitative homogenization estimates of order ε on strong Sobolev spaces H in the triangle 0 < γ < min(σ − n/2, 2− σ). Here n denotes spatial dimension. ...

متن کامل

Characterization of Two-scale Gradient Young Measures and Application to Homogenization

Young (or Parametrized) measures have been introduced in optimal control theory by L. C. Young [39] to study non convex variational problems for which there were no classical solution, and to provide an effective notion of generalized solution for problems in Calculus of Variations. Starting with the works of Tartar [35] on hyperbolic conservation laws, Young measures have been an important too...

متن کامل

Multiscale Young Measures in Almost Periodic Homogenization and Applications

We prove the existence of multiscale Young measures associated with almost periodic homogenization. We give applications of this tool in the homogenization of nonlinear partial differential equations with an almost periodic structure, such as scalar conservation laws, nonlinear transport equations, HamiltonJacobi equations and fully nonlinear elliptic equations. Motivated by the application to ...

متن کامل

Multiscale problems and homogenization for second-order Hamilton–Jacobi equations

We prove a general convergence result for singular perturbations with an arbitrary number of scales of fully nonlinear degenerate parabolic PDEs. As a special case we cover the iterated homogenization for such equations with oscillating initial data. Explicit examples, among others, are the two-scale homogenization of quasilinear equations driven by a general hypoelliptic operator and the n-sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005